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Abstract. First-principles total-energy electronic structure calculations are used to find the
epitaxial line of tetragonal Ti, i.e., the line of body-centred tetragonal (bct) structures produced
by isotropic epitaxial strain on the (001) plane of tetragonal phases of Ti. An fcc phase and
a higher-energy noncubic bct phase are found at minima of the total energy with respect to
tetragonal deformations, but the bcc structure is found to be a saddle point of energy. The
calculation yields the strained structures, the corresponding stresses, and the elastic stiffness
coefficients on the epitaxial line. A segment of the epitaxial line between the two phases is
shown to be inherently unstable, so unique meaning can be given to designating a structure as
strained fcc Ti. The bulk structure of a film of Ti on Al{001} is shown to be strained fcc Ti, a
new phase not on the phase diagram.

1. Introduction

One modern technique for producing metastable phases is to grow a film in pseudomorphic
or coherent epitaxy on a substrate that has a surface mesh close to the surface mesh of
the metastable phase [1]. The bonding of film to substrate is assumed to be strong enough
in pseudomorphic epitaxy to strain the film mesh to the substrate mesh. Frequently, the
film is thick enough, say eight or ten atomic layers, to have several interior layers with the
bulk spacing. The atomic structure of that specimen, which includes the bulk layer spacing,
can then be determined by quantitative low-energy electron diffraction (QLEED). Usually
the film is strained because the mesh of the surface plane of the substrate does not match
precisely a mesh in a plane of the metastable phase.

In order to claim that the measured strained structure is a strained specimen of a
particular stable or metastable equilibrium phase of the film material, we usually show
that a physically reasonable epitaxial strain, i.e., a strain in the two dimensions of the
surface plane that is not larger than a few per cent, acting on that equilibrium phase can
produce the observed structure. However, even if that strain calculation can be done, which
requires knowledge of the elastic moduli of the equilibrium phase, there is still a conceptual
difficulty in identifying a particular equilibrium phase as the one that is strained. Namely,
we can ask why the observed structure cannot be regarded as a strained form of some other
equilibrium phase, especially if the strains from several equilibrium phases are comparable.
One object of the present work is to show that modern electronic theory can give a sharp
criterion for this identification. The argument will be illustrated by showing that a film of
Ti on Al{001} is strained fcc Ti. A second object is to estimate the limits of epitaxial strain
that a phase can accept before it goes unstable.
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The key to the unique identification is the capacity of modern electronic structure
programs to calculate ground-state energies of arbitrary structures, including highly strained
structures of the various equilibrium phases, with good accuracy. The strained structure can
even be unstable. This capacity is exploited here for bct Ti, where a particularly convenient
representation of the energy of bct Ti as a function of lattice constantsa andc has recently
been published [2], and a structure has been determined for epitaxial Ti on Al{001} by
QLEED [3]. The work here verifies and enhances the previous structure determination,
which depended on the assumption that the elasticity was linear up to the strained structure,
i.e., that the strain could be treated as a small deformation of a cubic structure with constant
elastic moduli. In the present work, the elastic moduli and the structure change substantially
as the deformation proceeds, but the stresses and the elastic moduli can be calculated for
all deformations.

2. Formulation and results

In reference [2] the total energy of tetragonal Ti (and six other metals) is calculated from
first principles by the full-potential linearized-augmented plane-wave method using the code
WIEN95 and the local-density approximation. The total energy per atom is represented by
a power series in the tetragonal structural parametersc/a and V , the volume per atom.
The power series has 28 terms and gives the energy per atomE to an accuracy better

than 0.01 mRyd within the ranges 0.8 6 c/a 6 1.6 and 100 au(14.8 Å
3
) 6 V 6

117 au(17.3 Å
3
), which includes the three stationary points ofE.

This simple analytic representation of the tetragonal energyE(a, c) as a power series
permits quick evaluation ofE and its first and second partial derivatives from the power
series for each derivative. Hence the stationary points ofE(a, c) corresponding to minima
and saddle points ofE are readily found from vanishing of first derivatives, and the elastic
moduli from evaluation of second derivatives.

The quantity of greatest immediate interest for epitaxially strained states is the epitaxial
line, i.e., the line of states for which(∂E/∂c)a = 0, which is the epitaxial boundary condition
of zero normal stress on the (001) plane. The epitaxial line is found by calculatingE as a
function ofc at eacha, and finding thec at whichE is a minimum. The values of(∂E/∂a)c
along the epitaxial line are also tabulated. The stationary points ofE are the points on the
epitaxial line at which(∂E/∂a)c also vanishes, and are then easily and accurately found
by interpolation of the tabulated values. For Ti and in general, there are three stationary
points ofE, two minima and a saddle point, two of which must occur at the cubic structures
c/a = 1 andc/a = √2 (since(∂E/∂a)c = (∂E/∂c)a at cubic points).

Along the epitaxial line the isotropic in-plane stress is found from

σ = a

2V

(
∂E

∂a

)
c

(1)

where the factor 1/2 occurs because both dimensions of the cross section change whena

changes. Tetragonal elastic stiffness coefficients are conveniently defined by

c11 = a2

V

∂2E

∂a2

c13 = ac

V

∂2E

∂a ∂c

c33 = a2

V

∂2E

∂c2

(2)
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which give the coefficients of the second-order differential ofE in the Taylor expansion of
E at point(a, c), namely,

δ2E

V
= c11

2

(
δa

a

)2

+ c13

(
δa

a

)(
δc

c

)
+ c33

2

(
δc

c

)2

. (3)

These tetragonal elastic stiffness coefficients are related to the usual two-index elastic
stiffness coefficientscij of the tetragonal structure by

c11 = 2(c11+ c12)

c13 = 2c13

c33 = c33.

(4)

The relations (4) follow immediately by comparing the second derivatives ofE in (2) with
the second derivatives ofE with respect either toa1 or to a1 and c of three orthogonal
coordinatesa1, a2, andc at a1 = a2 = a; such derivatives define thecij . The definitions
(2) and relations (4) also appear and are discussed in [4]. The condition thatδ2E > 0 for
all δa andδc, i.e., thatδ2E is positive definite, is then

D ≡ c11c33− c13
2 > 0. (5)

Then when the stability indexD < 0, there are strains for whichδ2E < 0 and the state is
inherently unstable.

Plotted as functions ofc/a along the epitaxial line of Ti in figures 1 and 2 are six
quantities: the position of the epitaxial line on the tetragonal plane (coordinatesc/a and
V/V0) and quantitative values ofE, cij , D, σ , and the strainδa/a on each phase.

3. Discussion

The principal results of this work are, first, to establish that the strained epitaxial film of Ti
on Al{001} can be uniquely identified as a strained specimen of the fcc phase of Ti, and,
second, to evaluate the limits to the compressive strain and the tensile strain that the fcc
phase can accept, beyond which the phase is inherently unstable.

The identification of the observed bulk structure of the Ti film as strained fcc Ti is
shown in figures 1(a) and 2(a). In figure 1(a) the measured structure (open square) and
its error line agree with the fcc segment of the epitaxial line aroundc/a = √2 and not
with the segment around the bct phase atc/a = 0.85. In figure 2(a) the presence of an
inherently unstable section separating the fcc from the bct segment is shown whereD < 0.
This phase identification is particularly interesting because fcc Ti does not appear on the
usual pressure–temperature phase diagram, whereas bcc Ti occurs above 1155 K at zero
pressure and above. At low temperatures, however, the bcc structure is unstable, but the
nearby bct phase is metastable.

The position of the QLEED structure and error line in figure 1(a) uses the values
c = 4.28± 0.06 Å, a = 2.8635 Å from [3]. The a-value is the side of the unit-square
surface mesh of Al{001}. The theoretical value ofa for fcc Al is 2.84Å, for the fcc phase
of Ti it is 2.84 Å, and for the bct phase of Ti it is 4.48̊A. Thus fcc Ti is expected to be a
very good match to a substrate of Al{001}; figures 1(a) and 2(c) indicate that the Ti lattice
constant is compressed by 2.5% by the Al{001} substrate, and the experimental value ofa

for Ti is about 2.93Å, as found in [3]. Although the theoreticala- and c-values are each
2–3% smaller than the experimental values, the theoretical reduced quantityc/a will be
closer to the experimental value. The experimental valuec/a = 1.495 clearly belongs to
the fcc segment of the epitaxial line, and is far from the bct segment aroundc/a = 0.85.
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Figure 1. The epitaxial line for Ti on the tetragonal plane, coordinatesc/a andV/V0, where the
reference volumeV0 = 107.9 au (16.0Å3) is the theoretical volume per atom of the equilibrium
fcc Ti phase atc/a = 1.40. The fcc phase and the bct phase atc/a = 0.85 are marked by
dots, and the saddle point atc/a = 1.05 by a×. (The value ofc/a is not exactly 1.00 or
1.41 at cubic points because of inaccuracy in the representation of the energy.) The LEED
structure for a film of Ti on Al{001} [3] is marked by an open square atc/a = 1.495 and an
error line arising from the error inc. V f ilm is reduced by dividing by the experimental volume
V
exp

0 = 119.2 au (17.7Å3) from the measured equilibrium structure of hcp Ti. The dashed
sections of the epitaxial line between the dashed vertical lines and beyond the vertical line at
c/a = 1.57 are unstable. (b) The energy per atom in mRyd along the epitaxial line, referred
to zero at the equilibrium fcc phase. There are minima at the bct and fcc phase points and a
maximum at the saddle point. (c) The tetragonal elastic stiffness coefficientscij in Mbar from
equation (2) as functions ofc/a along the epitaxial line.

In placing the LEED structure point in figure 1(a), the reduced volumeV/V0 is used for
the ordinate. Again, as in the case ofc/a, thereducedvolume using the experimental value
of V0 will be closer to theory. Since measurements on equilibrium fcc Ti are not available,
the value for hcp Ti is a reasonable estimate, and hence figure 1(a) usesV

hcp

0 = 119.2 au
(17.7Å3), which is about 10% greater than the theoretical valueV theor0 = 107.9 au (16.0Å3);
some idea of the accuracy of using the hcp value ofV0 is shown by the case of Co, where
both fcc and hcp phases are available—the volume per atom of hcp Co is 0.2% smaller
than the volume per atom of fcc Co.

To exclude the interpretation of the measured strained film on Al{001} as strained hcp
phase produced by anisotropic epitaxial strain, we need to apply again the idea that strained
regions of each phase are separated by inherently unstable states on any continuous path
between the phases, as is the case for tetragonal paths between the fcc and bct phases.
Although the stability along hcp to fcc paths has not been calculated, the existence of an
inherently unstable segment is very plausible, since any such path must go through points,
such as saddle points, where curvatures of opposite sign in orthogonal directions will make
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Figure 2. The stability indexD ≡ c11c33 − c13
2 versusc/a for Ti along the epitaxial line.

The unstable section of the line whereD < 0 is dashed and lies betweenc/a = 0.94 and 1.23.
(b) The isotropic epitaxial stressσ in the (001) plane in kbar along the epitaxial line. The phase
points are marked by dots. The unstable sections are dashed. (c) The isotropic epitaxial strain
δa/a in the (001) plane in % corresponding to the stress in figure 2(b) at each of the two phases.
The bct phase is compressed by 3.4% and the fcc phase is expanded by 4.9% at the edges of
the unstable section.

a stability index likeD in (5) negative.
The second principal result is obtained from figures 2(a) and 2(c). Figure 2(a) shows

that the fcc phase becomes inherently unstable forc/a below 1.23 and above 1.57. At
these values ofc/a figure 2(c) shows that 4.9% tensile epitaxial strain or 4.2% compressive
epitaxial strain are the limits of strain accepted by the fcc phase. These strain limits are
considerably smaller than the stability limit under hydrostatic tensile strain, which drives the
bulk modulus to zero only after lattice expansions of greater than 30% [5]. From figure 2(b)
the maximum epitaxial stresses that drive the fcc phase and the bct phase to instability are
respectively 29 kbar of tension or 15 kbar of compression. These have both been reduced
by nonlinear effects; thus if the Poisson ratio of fcc Ti remained constant at 0.43, the tensile
stress atc/a = 1.23 would be 48 kbar.

Note thatE plotted in figure 1(b) along the epitaxial path is the lowest energy along
any path in the tetragonal plane between the minima at the two phases, and has a maximum
of 2.59 mRyd at the saddle point atc/a = 1.05. It is noteworthy that thecij in figure
1(c) show strong nonlinearity, but no special behaviour at the stability limitsc/a = 0.94
and 1.23. The special behaviour is shown by the vanishing ofD in figure 2(a), which
corresponds toδ2E = 0 whenε3/ε1 = −c13/c33 = −c11/c13 = −1.95 at c/a = 0.94 and
−2.05 atc/a = 1.23. The strained bct structure is weakest for these strain ratios.

In summary, these first-principles calculations allow us to draw conclusions about the
existence of tetragonal equilibrium phases and the range of stability of epitaxial strain on
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these phases. Although there is limit on the accuracy of the calculations, that limit is
known, is plausibly about the same for stable and unstable states, and is made smaller by
comparison of reduced experimental quantities with theory. The main conclusions should
therefore be reliable.
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